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The preparation of high-temperature superconducting ceramics in bulk form is a
major challenge in materials science. For practical applications, such bulk materials must

have high magnetization, high critical current capabilities, and a high degree of stability

of these properties as a function of time at operational temperatures up to around 77 K.

These properties require, on one hand, elimination of weak links from the structure and,
on the other, introduction of sufficiently high concentrations of defect centers to produce
effective pinning of the flux matrix. The most promising route to the production of high-
quality bulk specimens involves melt processing of Y-Ba-Cu-O materials.

The current status of both partial melting and melt quenching techniques, with or

without an intermediate powder processing stage, are described in detail, and the



problems associated with each of the methods are discussed. Results of studies performed
on melt-processed materials prepared at the authors’ laboratory and elsewhere are
reported and discussed, with an emphasis on magnetization and on other physical
properties associated with it, such as critical current density, levitation force, and flux
creep. The nature of structural features which give rise to flux pinning, including both
small and large defects, is discussed with reference to theoretical considerations. The
rates of flux creep and the factors involved in attempting to retard the decay of the
magnetization are surveyed. Finally, recently discovered magnetization anomalies,
involving an increase in magnetization with increasing applied magnetic field over a
certain range of field intensities, are described And their origin ascribed to the removal

of proximity coupling or Josephson coupling of certain defects at higher fields.



I - INTRODUCTION

Since the discovery of high tempéf;iiure superconducting oxide La-Sr-Cu-O with
a critical temperature (T,) of 35 K in 1986 [1], great progress has been made in this area.
In early 1987, the discovery of a Y-Ba-Cu-O compound [2] with a T, of 92 K gave a
great boost to the field of high temperature superconductivity, since it made it possible
to use liquid nitrogen refrigeration, which is much simpler and more accessible than the
use of liquid helium. In early 1988, a bismuth-based compound, Bi-Sr-Ca-Cu-0, with
a T, of 110 K was discovered[3]. Soon after, the discovery of a TI-Sr-Ca-Cu-O
compound with a still higher T, of 125 K was made[4]. Our current understanding of
these new materials has grown rapidly during the past five years, due to the enormous
amount of research that has been performed on these materials worldwide. Compounds
based on Y,Ba,Cu,0;, (so called 123) are the most heavily studied of these new copper
oxide-based superconductors. Much of the progress has been through the use of single
crystals, which has provided insight into the structure, magnetization, flux pinning and
creep mechanisms, etc. It is clear that most of the practical applications of HTC
superconductors are contingent upon achieving high critical current. The upper value of
the critical current density, based on the calculated value from Ginzburg-Landau equation
[5], is 2.3 x 108 A/cm? at 0 K, which decreases to 2.7 x 10’ A/cm” at 77 K, in an applied

field of 1 tesla. Remarkably, in epitaxial thin films of YBCO deposited on a SrTiO,
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substrate, J. values above 10° A/cm’ at 1 tesla applied field have been reported[6].
However, in virgin single crystals of YBCO, only values around 1000 A/cm? at 1 tesla
and 77 K have been obtained[7]. Furthermore, in poly- crystalline 123 materials, made
by regular solid state sintering, the grains are weakly coupled together, lowering the bulk
J, value to about 100 A/cm? at zero applied field.

It is known that HTC superconductors have an anisotropic crystal structure which
results in strongly anisotropic electrical and magnetic properties. This crystalline
anisotropy manifests itself more dramatically in terms of limiting current densities in the
bulk polycrystalline materials than in thin films, since thin films are grown epitaxially on
the substrates. Consequently, crystal alignment is also necessary for bulk materials, in
order to achieve high critical current densities.

In the past four years, great progress has been made in eliminating intergranular
and high angle boundaries in polycrystalline superconductors by using so-called melt
processing techniques. Among these techniques are, melt texturing[8], partial melt
growth [9, 10], and various melt quenching techniques [11, 12, 13, 14]. These
techniques have been used to produce bulk samples with current densities exceeding 3 x
10* A/cm? at 77 K and 1 tesla.

In spite of major improvements in J,, large relaxation effects causing a decay of
the magnetization and of the persistent current have been observed. This effect is called
flux creep. 1t is a thermally activated process which is mainly due to a combination of
low pinning potentials and of relatively high temperatures (i.e. 77 K) at which these

materials are intended to be used. Stated in simple terms, jumping of trapp;ad-ﬂux lines
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from one pinning region to another causes the creep. In various HTC superconductors,

flux creep has been a major challenge for researchers since coherence lengths are
extremely small, having values in the order of 10 A, and as a result, flux vortex
migration can readily take place. In principle, the creep rate can be decreased by
increasing the pinning potential. Even though the origin of the pinning in HTC

superconductors is still the subject of considerable discussion, the main pinning

mechanisms are being recognized as intrinsic pinning [15], pinning by extended defects
such as intergrowths and boundaries [16], pinning by second phase inclusions [17, 18],
or by point or columnar defects [19, 20]. Neutron irradiated YBCO single crystals have

produced J, values in the order of 6 x 10° A/cm?, an improvement of almost two orders
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of magnitude over un-irradiated crystals. This remarkable improvement is believed to
be caused by inducing point defects with sizes of the order of the coherence length. In
thin films of YBCO, the natural existence of numerous screw dislocations and columnar
1 holes is believed to be responsible for providing effective pinning sites [21].

The achievement of high J, in single crystals indicates that it is possible to increase
the J_ values in bulk polycrystalline YBCO superconductors by eliminating all the weak
links and cracks and aligning the crystals. In other words, processing techniques should
be optimized to produce the necessary concentration of flux pinning centers while
eliminating weak link features.

The use of HTC materials for large scale applications requiring high J; values will
become possible only upon utilizing high quality bulk materials, rather than millimeter

size single crystals, since irradiation methods are less than ideal as a basis for the
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manufacturing process. Therefore the development of processing methods to produce
large pieces of polycrystalline bulk HTC materials with appropriate pinning sites is very
important.

In the following chapters, various melt processing techniques capable of producing
high-quality bulk specimens of superconducting YBCO will be discussed. The
magnetization characteristics of these materials, which include magnetic hysteresis loops
and creep data will be correlated with the corresponding microstructure and with possible

pinning mechanisms.

II - THE PHASE DIAGRAM OF YBCO

The equilibrium phase diagram of YBCO is a complex one. Various pseudo-binary
and ternary equilibrium phase diagrams have been proposed [22, 23, 24], but to date no
consensus has been reached as to the exact locations of various phase boundaries. This
is due mostly to the critical rule of oxygen in all the phase compositions and phase
equilibria in the system. The processing temperatures used in conventional solid state
sintering of YBCO are normally below the lowest peritectic reaction temperature in the
system and thus the phase considerations are relatively straightforward. The only major
processes which appear to be involved around the stoichiometric 123 composition are the
reactions between the Y, Ba and Cu precursors to form the ternary compound and the

-oxygen-controlled interconversion of the insulating tetragonal phase and the
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superconducting orthorhombic phase. Howev'cr,rih the melt processing techniques, the
processing temperatures exceed one or several eutectic and peritectic temperatures, which
makes the processing considerably more complicated than regular solid state sintering.
Furthermore, additional superconducting compounds in the YBCO system, such as the
124 compound with a T, of about 85 K, can be synthesized under high oxygen pressure
[25]. Therefore, the complexity of the relevant phase diagrams increases due to added
P-T surfaces.

In this review paper, we limit our discussion to the region around the 123
composition since there is far more information available on this system than on any of
the other HTC superconducting systems.

One of the recent phase diagrams of YBCO, adapted from K. Dembinski et al.
[26], is illustrated in Figure 1. The various eutectic and peritectic reactions and

temperatures are given below.

e, 915 123 + BaCuO, + CuO > L
e, 920 BaCuO, + CuO —>1L

P, 940 123 + CuO —> 211 +L

P, 975 211 + CuO > Y,Cu,0s + L
P, 1000 BaCuO, + 123 —> 211 + L
P, 1010 123 > 211 +L |

e, 1100 Y,Cu,05 + CuO-—>1L

P, 1125 Y,Cu,05-—> Y,0; + L



P, 1270 211 —> Y,0, + L

Of prime interest in the melt processing techniques is the vertical cut through the
phase diagram at the stoichiometric 123 composition. As illustrated in Figure 1, the 123
solid phase decomposes sequentially into 211 and Y,0; solid phases before complete
melting. Each one of the melt processing techniques described below is associated with
a specific sequence of decomposition and re-formation reactions of various solid phases,

followed by phase growth in the region of stability of a particular phase.

III - MELT PROCESSING

The stimulus for the development of melt processing techniques has been the
demand for high-quality HTC materials, i.e. materials combining high current density (J.)
and large magnetization with high mechanical strength. In recent years it was realized
that the attainment of high J, and strong magnetization (e.g. for levitation purposes)
requires materials in which weak links, involving features such as cracks, voids, high-
angle grain boundaries, and insulating phases at grain boundaries, are eliminated. At the
same time, a sufficiently high concentration of flux pinning sites (certain defects,
impurities or second phases) has to be present. Conventional solid state sintering, which
was extensively employed during the early development of HTC materials, yields

materials with low J, values due to the presence of an excessive number of weak links.
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These materials also tend to have low density and poor mechanical strength. On the other
hand, large, pure and stress-free single crystals of 123 cannot be expected to contain
enough flux pinning centers. Accordingly, the most promising materials for HTC
applications are polycrystalline materials made by melt-based techniques, since such
materials can provide, on one hand, high density and a high degree of grain alignment
to minimize the number of weak links, and on the other hand, a sufficient number of
defects to serve as flux pinning centers. As described below, melt-based techniques can
be controlled to produce second phases such as 211 (Y,BaCuOj), which provide effective
flux pinning sites.

There are many different types. of melt processing techniques which are described
in the literature. These techniques can be divided, in general, into two major categories,
viz. partial melting and melt quenching. Melt processing techniques are complex because
of the many processing parameters involved. The development of optimized techniques
has been the subject of extensive work at the authors’ laboratory and by other groups.
For each technique, partial melting and melt quenching, two variations will be described.
One of them involves thermal treatments on the bulk YBCO specimen as a whole, and
the other includes a stage during which the material produced by initial melt-based
treatments is ground into powder and the powder used in the stages leading to the final

product. Figure 2 illustrates the flow diagrams of these four processing methods.

1. Partial Melting

Partial melting or partial melt growth was initially designed to take advantage of
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liquid phase sintering [9]. While there are many variations of this technique, the
principal steps are to form the liquid phase by heating a pre-calcined YBa,Cu,0,,,
material to a temperature above that of the first peritectic reaction as shown earlier. The
highest temperature is usually between 1010-1150°C, depending on the composition and
method employed, resulting in the formation of a Cu-rich liquid phase and a 211 solid
phase. The needle-like 211 crystals are relatively coarse, having an average size of 10-
100 microns depending on the highest temperature employed. The heat treatment is
followed by slow cooling (e.g. 1-10°C/hr) from a temperature of 0-50°C above that of the
peritectic reaction to below 950°C. During this step the 123 phase is nucleated and plate-
like grains, which grow in the ab planes, are formed to produce a layered structure. The
size and thickness of these plates depend on the initial composition, the oxygen partial
pressure and the cooling rate. Slow cooling is further continued in an oxygen
environment to below 300°C, transforming the insulating 123 tetragonal phase to the
superconducting orthorhombic phase. Jin et al. [8] used a procedure similar to the one
described above but applied a temperature gradient during the nucleation and growth
stage. The so called texturing process has been commonly used for metallic alloys and
it is believed to produce uni-directional solidification. 123 samples made by the texturing
process exhibited critical current densities as high as 1.7 x 10* A/cm? at zero applied
field, and 4 x 10° A/cm? at 1 tesla, all at 77 K. The natural tendency of the system to
grow a layered crystalline structure was demonstrated by Salama et al. [10], who used
a very slow cooling rate of 1°C/min from 1030°C to 980°C. Using this method they

obtained samples which exhibited transport ciarrent densities of 1.8 x 10* A/cm? at zero

10



my o

/'7
/

/

field and 77 K. Hu [12] used a similar slow cooling process but increased the oxygen
pressure to several atmospheres during the cooling stage. He obtained samples that had
current densities as high as 2.1 x 10* A/cm? at zero applied field, and 1.3 X 10* A/cm’
at 0.8 tesla, all at 77 K.

The partial melting techniques, however, appear to have a relatively severe
shortcoming. Incongruent melting of YBCO above the first peritectic reaction produces
a liquid phase which tends to diffuse out to the exterior as a result of surface tension and
low viscosity. In the case of larger samples, vertical drainage is very likely to take place.
The depletion of the liquid phase from the interior of the specimens hinders the grain
growth and texturing processes during the cool-down stage from above the peritectic
reaction temperature. The problem is much more severe for specimens with large cross
sections in a uniform temperature zone. Bars and cylinders 5 cm long with small cross
sections, usually less than 5 mm, have been partially melted by pushing them into a hot
zone at a linear speed of several mm/hr and a temperature gradient of 50°C/cm [27].
Clearly, this procedure can be used to produce high-quality thin rods, but unfortunately

it is not suitable for fabrication of articles with a large cross sectional area.

2. Mixed-Powder-Partial-Melting (MPPM)

In the MPPM process, 211 phase pure powder is mixed with a Y-Ba-Cu-O pre-
calcined powder. The yttrium content of the YBCO precursor can vary from the
stoichiometric 123 ratio [28] to about zero [29]. The resulting mixture is then heated to

above the first peritecti¢ reaction temperature, and is slowly cooled through the peritectic

11



‘. PR
R TR TSR

L — o ———— | WA e w1 ®

range to react the 211 phase with the liquid phase present to form 123 with residual 211
providing pinning centers. We have also studied this method extensively with varying
target concentrations of yttrium in the final product. Again, this method, like all other
partial melting techniques, suffers from extensive loss of the liquid phase at high
temperatures when fabricating large specimens.

The main advantage of various partial melting techniques is that they do not
require complete melting, which is normally done in a crucible. Molten YBCO is very
reactive and dissolves almost any crucible materials with which it comes in contact, even
noble metals such as platinum and rhodium. Accordingly, the use of partial melting
procedures, with the liquid largely confined within the solid structure of the YBCO
material, minimizes the problem of attack by the reactive melt on the crucible and the

resulting contamination of the melt by dissolved crucible material.

3. Melt Quench Processing

It has been well established that the presence of fine and uniformly distributed 211
particles in the liquid phase at the onset of the first peritectic reaction is a key factor in
the development of a well aligned structure with a minimum number of weak links. The
resulting microstructure of such a system consists of a multitude of aligned platelets with
a very fine 211 distribution, which is believed to play an important role in ‘ﬂux pinning.
Partial melting alone cannot produce a well distributed 211 phase in large samples,
because prolonged heating above the peritectic reaction temperature results in the liquid

phase segregation and drainage as discussed above. Consequently, it was found that if

12
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the heating is carried out above the second peritectic reaction temperature, 211
decomposes into Y,0, and a Ba-Cu-O rich liquid phase. At this stage, the mixture has
a low viscosity and can be quenched to freeze the high-temperature structure. Subsequent
heating above the first peritectic reaction temperature results in the nucleation and growth
of the 211 phase at the Y,0, sites, and thus a uniform distribution of 211 is obtained.
The annealing process is continued by rapid cooling to about 1000-1050°C, and follows
similar cooling schedules to those described for the partial melting process.

There are several variations of this method but in all cases a precursor of YBCO
is melted at high temperature, normally above 1350°C. Different groups have used

different terminologies and abbreviations for their processes, several of which are listed

below:

QMG  Quench and Melt-Growth Ref [17]
MPMG Melt-Powder-Melt-Growth Ref [30]
MQ Melt-Quenched Ref [14]

MQPPMG Melt-Quenched-Pressurized-Partial-Melt-Growth Ref[31]

The YBCO precursor is normally calcined several times before melting. However,
pre-calcined mixtures of Y,0;, CuO, and BaCO;, have also been used. The composition
is centered around 123, but small deviations are also common, especially with slight
enrichment with respect to yttrium or with additions of other oxides to increase the

number of pinning centers. For more details see Ref [14], which describes studies

13
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involving compositions with excess yttrium or with added Gd, Tb, Ho, Yb, or Nb.
There are not many materials which can be used for melting containers, because of the
extreme corrosivity of molten YBCO materials at temperatures above 1400°C. Platinum
crucibles seem to be the best choice at the present time, despite their being dissolved
away at a level of 0.2-1.5 wt% in the melt at about 1450°C. For melting of short
duration, about 10 minutes at 145@C, the level of Pt in the melt is about 0.5%. Not
much information is available about the effect of the presence of platinum on the YBCO
system. It is believed that platinum forms a compound with Ba and Cu oxides which has
a crystalline structure similar to that of 123 [32, 33]. This phase is finely dispersed in
the final 123 matrix and may in fact play an important role in flux pinning. More studies
are presently under way to determine the effects of the presence of platinum in YBCO
superconductors.

There have been reports of two methods of containerless melting in the literature.
The first method [34] consists of heating small particles of 123 material very quickly
above 1450°C in an inductively heated vertical tube furnace. The temperature of the hot
zone of the furnace can reach 1600°C. At the receiving end of the furnace, the molten
droplets are quenched very rapidly on a chilled copper wheel. The resulting product is
a finely dispersed Y,0; phase 1-2 micron across in a matrix of Ba-Cu-O phase.

According to the second method [35], sintered 123 pellets are melted with an H,-
0, torch (O, rich flame), and the droplets are rapidly quenched in a high speed twin
rolling mill to form thin flakes. The key to the success of the melt quenching technique

is to obtain very fine dispersion of Y,0, in a Ba-Cu-O rich liquid phase. Since Y,0,
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agglomerates very quickly at high temperature, it is necessary to shorten the melting time
as much as possible. As a result, crucible melting may not be suitable for producing
large quantities of melt quenched materials, and other continuous methods with a short

residence time of the melt in the furnace are required.

4. Melt-Powder-Melt-Growth

Several problems are encountered with the melt quench and partial melting
technique when sample size becomes large, i.e. more than 10 mm in diameter. First,
reheating the specimen above the first peritectic reaction temperature to the region where
the 211 phase is stable produces a large volume fraction of liquid relative to the amount
of the solid 211 phase. The reaction is very fast, and if it is not controlled properly, it
results in formation of large grains of 211, defeating the purpose of the melt quenching
process. In addition, due to its low viscosity, the liquid phase in contact with 211 can
drain out easily, as described in the section on partial melting, and leave behind a large
amount of porosity in the final product. To alleviate these problems and yet benefit from
the melt quenching technique, two methods have been proposed. In the first method [30],
the melt quenched specimens are ground and pressed into different shapes before partial
melting. This additional step produces a more homogenous distribution of Y,0;, and
consequently finer dispersion of residual 211 phase in the final superconducting 123
material. The second method [31] is to apply an external pressure at elevated
temperatures. It is observed that the bulk YBCO materials have high plasticity above the

first peritectic reaction temperature, and this is accompanied by the formation of a

15
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relatively dense skin at their outer surfaces. The external pressure squeczes the outer
skin and prevents the liquid from draining. As a result, larger specimens have been
fabricated without serious loss of the liquid phase, and these specimens have dense 123

superconducting structures.

IV - I P RTY MEA

1. Transport Critical Current

It is customary to determine the current density by passing a dc current through
the sample and measuring the voltage by the
standard four point technique. The four-point technique of measuring resistance is based
on having two leads or probes carry a known constant current I into and out of the
specimen, while the other two leads are used to measure the potential drop between two
equipotential surfaces resulting from the current flow. For superconducting specimens
the leads are often arranged in a linear configuration, with the contacts for the input
current on the ends, and those for the measurement voltage near the center. The method
is very suitable for thin films and wires, but it generates catastrophic warm-up in the
cases of bulk samples due to the fact that such samples have a much larger cross sectional
area. As a result, pulse current density measurements are preferred to continuous current
measurements. With a millisecond pulse duration, current densities in excess of 75000

AJ/cm? have been obtained for partially melted specimens at zero external field, and of
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37000 A/cm? at 0.6 tesla [10].

2. Magnetization Critical Current

Most of the current densities reported for samples produced at the authors’
laboratory and at other facilities are obtained from the magnetization measurements. This
can be done only if the critical state is established in the sample. In the critical state
model, first proposed by Bean [36], every region in a type Il superconductor carries a
critical current density J,, which is determined by the local magnetic field in that region.
Based on this model, the magnetization hysteresis is related to the critical current density

and to the effective thickness, d, of the sample through the following expression:

Delta M = (1/30) J.d )]

where delta M is the width of the hysteresis loop, i.e. the gap between the magnetization
obtained for a given magnetic field, upon decreasing and increasing the field,
respectively, in emu/cm®, d is the effective thickness in cm of the face of the sample
normal to the applied field, and J, is the critical current density in A/cm?,  This
expression holds when the applied field is perpendicular to the ab plane. In cases where
the sample dimensions in the a and b directions (d, and d,, respectively) are not the same,
d is calculated as d = (d, x dp)'?.

In the case of an applied field perpendicular to the ¢ axis, J* must be calculated

first, and then J¢ is obtained from the following expression [12]:

17



Delta M = (J.120) x [1 - (1/3) x (J/3.)] 7))

However, if there are local regions in the superconductor which are not yet at the
critical state, (e.g. grain boundaries and weak links in sintered materials) then it is likely
that the critical state is determined by one or several of the weakest regions. As
mentioned above, melt processed materials have oriented grain structures without any
major weak links. To ensure that the critical field is established, a plot of delta M,
measured with the sample face perpendicular to the field direction should result in a
straight line for different applied fields. This implies that Bean’s critical state is
established in these materials, and the critical current density can be estimated from the
magnetization hysteresis curves. Such a plot for one of the melt processed material
produced in the authors’ laboratory is shown in Figure 3. The sample was in a
rectangular form which was progressively cut into smaller pieces. The field was kept
parallel to the c-axis. The measurements were performed with a PARC vibrating sample

magnetometer and a 6-tesla SQUID.

3. Flux Creep Measurements

Creep measurements were performed with the applied external field either switched
on or turned off. Giant flux jumps were observed when samples were charged up to very
_ high magnetization values corresponding to more than 3 x 10° A/cm? at 4.5 K (see

below).

18
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4. Microstructure
The microstructure of the samples produced at the authors’ laboratory was
measured using techniques including SEM, EDX, and X-ray mapping and line profiling.

Standard X-ray powder diffraction techniques were used for phase analysis.

5. Levitation Force Measurements

The levitation force, which HTC superconducting materials exercise in their
interaction with magnets, has been measured by different techniques (see [37, 38, 39)).
The basic principles involved in these methods are identical. The measurement consists
of bringing a primary magnetic flux source to a position facing a superconducting
specimen. The component of the primary flux parallel to the surface penetrates the
surface, inducing shielding currents perpendicular to the applied field. The levitation
force is thus the product of the current and the field. In simple terms, as the flux source
is brought closer to the superconductor, more flux penetrates, resulting in a stronger
shielding current, and, consequently, a stronger repulsion force. In terms of sample
magnetization, the magnitude of the levitation force depends on the strength and gradient
of the flux source, the size of the specimen, and the ability of the superconductor to trap
the induced field, M (i.e., the sample magnetization). Thus, the levitation force is given

by [40]:

F = M (dB/dz) x (A'H) 3

where F is the levitation force, dB/dZ is the applied field gradient in the direction normal

19
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to the face of the sample, A is the area of the face, and H is the thickness of the sample.
The experimental set-up measurements of the force have been described in detail by
Chang et al. [41].

In the dynamic force measurements, two other parameters, viz. magnetic stiffness
and magnetic damping are also obtained, and it is observed that they are directly related
to the flux pinning potential of the superconductor. Stiffness reflects the ability of a
levitation device to supply dynamic reactive forces, and represents the slope of the force-
displacement dependence, while magnetic damping reflects the ability of a levitation
device to dissipate vibratory energy and is measured from the decrease in amplitude of
successive oscillations after the width of the gap between a superconductor and a magnet
has been changed away from its equilibrium value [42]. In a typical measurement of
static force as a function of distance, a hysteresis effect similar to magnetization is
obtained. The relationship between magnetization and levitation is complex, but there
appears to be a direct relation between the inverse slope of the magnetization hysteresis
loop (i.e. dM/dH), and the levitation force. Preliminary results indicate that when the
inverse slope is zero, a large levitation is obtained, whereas negative values of the inverse
slope represent lower force values. Figure 4 shows the levitation force as a function of
vertical distance for two melt processed materials [43). One of the YBCO
superconductors was fabricated by Nippon Steel Corporation and the second one at the
authors’ laboratory. The samples were in the shape of discs, approximately 45 mm in
diameter and 11 mm thick. The results show that the levitation forces of the two

materials are similar in magnitude, but the magnetic damping of the material produced
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at the authors’ laboratories is about 3 times larger, indicating that a larger pinning

potential is developed in this specimen.

V - FLUX PINNING IN MELT PROCESSED YBCO

Pinning is caused by local fluctuations in the properties of a material which result
in the free energy of the specimen depending in detail on the position of the vortices,
rather than on the mean flux density. More specifically, basic pinning forces generally
originate from the inhomogeneities contained in the superconductors, such as point
defects, dislocation lines, precipitates, and grain boundaries [44, 45, 46]. Elastic strength
associated with the distortion of the vortex line (VL) and collective as well as intrinsic
pinning effects may also hinder the motion of the VL [47, 48, 49]. In the case of YBCO
materials, after weak links are eliminated through melt processing, critical current
densities are usually only about 10° - 10* A/cm? at 77 K in an applied field of H = 1 T.
Further increases in J, mainly depend on the enhancement of flux pinning. In the
following sections we describe several pinning mechanisms which are believed to be the

most important ones in the YBCO system.

1. Fine-Scale Defect Pinning
The physical nature of the pinning can be made clear in certain limiting cases by

splitting up the free energy of a vortex into ‘terms which can be associated with the
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condensation energy and the core of the vortex on one hand, and terms which can depend
on the magnetic energy and the circulating currents on the other [47]. Especially in the
HTC superconductors, as « » 1 with « denoting the ratio between the penetration depth
and the coherence length, respectively, the structure of a VL may be well described by
the simplified VL model. This model is one which has a non-superconducting core of
radius £, the coherence length, surrounded by a supercurrent-magnetic field region with
a characteristic radius A\, the penetration depth [50, 51]. When the core is located at a
non-superconducting defect, its free energy is lower than in the surrounding
superconducting matrix, and the energy difference is the condensation energy. The

pinning force per unit length due to the condensation energy is then estimated to be

2
C

EER

2L=Hc2 4
uE.zE 166 (4)

p:

where, H_ is the thermodynamic critical field.

On the other hand, a non-superconducting defect with a dimension of 2R,, where
¢ < R; € \, embedded in the matrix of a high temperature superconductor, may give
rise to a pinning force between the defect and a vortex line due to the compression of the
vortex line, in addition to the pinning force due to the condensation energy. In some
cases, the action length of the pinning force due to compression of the vortex line may
be much shorter than A. In this case the pinning force induced by the compression of the
vortex line may be comparable to, or even larger than, the one due to the condensation

energy, depending on the size of the defect.

22



2 kbl & kel 1

Usually, extremely high density defects with dimensions of about ¢ can be
naturally introduced in thin films during their preparation. For example, STM studies
of c-oriented YBa,Cu,0s s, films revealed a very large density of screw dislocations and
stacking defects [52, 53]. This explains why J, values in these thin films are generally
much higher than in the corresponding bulk materials. While dislocations or stacking
faults also exist in bulk materials, it is unlikely that they can reach such a high density
in such materials, especially in grain textured ones, so as to play a major role in
maintaining a very high J.

In most cases, however, pinning defects can be introduced in a controlled manner.
Among various defect-introducing techniques, irradiation, oxygen deficiency and chemical
doping (atomic substitution) are the ones most commonly applied most for introducing
fine-scale defects in HTC superconductors.

Irradiation with high energy particles, such as electrons, neutrons and protons, has
proven to be very effective in flux pinning enhancement in HTC superconductors [54, 55,
56]. Because of collisions with the incident particles, some atoms in the lattice are forced
to move away irreversibly from their normal positions, which then become artificial
pinning centers because of the very sudden deviation of superconducting order parameters
near these defects. Irradiation with different energies and types of particle incidence can
produce a variety of defect sizes and patterns of distribution. As the whole irradiation
process can be conveniently controlled, the resulting pinning effect can be optimized
much more easily than upon using other methods. It has been demonstrated that the

pinning enhancement depends heavily on the type and energy of radiation and on the
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beam direction with respect to the orientation of the sample. There are even some
indications of the existence of a threshold defect size for effective pinning, which is about
10 - 20 A in YBCO. Defects of this size or larger are at least 10° times more effective
in flux pinning than point defects [57). It has been reported that column defects produced
through irradiation, being parallel to flux vortices, have the strongest pinning effect [58].
Through irradiation, a hundred-fold increase in J, to 4.5 x 10* A/em’ has already been
achieved [55] at 77 K and H=1 tesla, which is almost on the same high level as J_ in thin
films.

It is well known that in the YBa,Cu,Os,, system, YBa,Cu,Oss is non-
superconducting, and as x increases, so does T, reaching its maximum with x=7.
However, materials with the highest T, in this system may not perform well in flux
pinning. Materials with appropriate oxygen deficiency may support high J. because these
high density oxygen-deficient defects, which cause drastic changes in superconducting
order parameters in their vicinity, may serve as effective pinning centers [59].

We have performed various experiments involving doping with foreign elements,
in the hope that these introduced foreign elements would create local non-superconducting
or lower-T, superconducting regions to serve as effective pinning centers. However, we
observed that the real situation is very complicated. The foreign element chosen for
doping as well as the amount of this element should be suitable for the formation of local
non-superconducting or weakly superconducting regions rather than for the dopant to be
deeply submerged by the superconducting proximity effect or to suppress too much the

overall superconductivity of the matrix material. Besides, the processing involved in the
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doping experiment should be tailored to accommodate the introduction of the foreign
element. For example, for each element there is a certain temperature range in which
the element reaches its maximum solubility in the matrix material, and if the sample is
held at a certain lower temperature too long, the foreign atoms tend to segregate and
accumulate at the grain boundaries. In this case the introduction of the dopant may causé
serious weak-link problems instead of being beneficial.

Among the various doping experiments performed by us, doping with Pr, for
instance, is typical. It has been reported [60, 61, 62] that PrBa,Cu;O, is a non-
superconductor with very high resistivity at low temperatures; it has the same
orthorhombic structure as superconducting YBa,Cu,O, and its a-b lattice constants are
within 1.5% of those of YBa,Cu,0,. Pr therefore has high solubility in the YBa,Cu;0,
system. Moreover, superconductivity in YBa,Cu;0, is known to be strongly suppressed
by the substitution of Pr for Y [63, 64], e.g., in Pr,Y, ,Ba,Cu;0,, with y = 0.3, the

transition temperature T, becomes 57 K. Accordingly, it was expected that doping of Pr

" in trace amounts would result in a wide distribution of Pr’* ions throughout the material,

causing the formation of local defect regions to serve as effective pinning centers. We
conducted the Pr-doping experiments through use of partial-melt-growth processing at an
oxygen pressure of about 25 psi, taking care to use a carefully adjusted cooling rate at
high temperature, because the cooling rate is was very important for effective doping.
Figure 5 shows a hysteresis curve for a grain-textured bulk sample of
ProoYo0oBa,Cu;0,. The measurement was performed with the applied field being

parallel to the c-axis. Measurements of a.c. susceptibility showed that the sample has a

25



-

-
—

e

/
/

T, of about 90 K. Magnetization values in Figure 5 were converted to J, values using
Bean’s critical state equation, as shown in Figure 6. Usually, bulk superconductors show
a monotonically decreasing magnetic hysteresis as well as critical current density with
increasing magnetic field at constant temperature. However, Figures 5 and 6 show an
unusual behavior, with the hysteresis and, consequently, the critical current density
dropping to a minimum, then rising, instead of dropping, up to H = 0.7 tesla. Figure
7 illustrates that the magnetization at 77 K continues to rise to a maximum at about 1
tesla before falling to zero at about 3.5 tesla.

Jin et al. [65] used a technique which is based on decomposing the YBa,Cu,0,
precursor into YBa,Cu,0, + CuO. As Cu atoms have to come out from every unit cell,
very high density of fine-scale defects may therefore be built up inside grains. By this
approach they observed an increase in intra-grain J. by a factor of ten over the values
obtained in typical YBa,Cu,0; samples.

The combination of doping and grain-texturing is complicated. Excessive doping
may suppress the overall superconductivity, and may also introduce new weak links. We
are conducting studies of doping and grain-texturing in a systematic manner to optimize

the current and pinning potential.

2- Large-scale defect pinning
Defects with dimensions much larger than the coherence length £ may also effectively
enhance flux pinning because of their large-scale boundaries, across which there is a

sharp change in the parameters of superconductivity. In polycrystalline materials, this
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type of boundary defects can exist in various forms, such as isolated weak links at the
grain boundaries, isolated microcracks, and boundaries between the superconducting
matrix and very weakly superconducting or non-superconducting precipitates and
inclusions, etc. The basic pinning forces involved can be divided into two types, one due
to the vortex core pinning interaction, corresponding to the condensation energy, at the
boundary, and the other one resulting from magnetic pinning interaction, i.e., the image

pinning force, near the boundary. J, due to large-scale boundary pinning is found to be

B
(1- )
B, , (5)

/B 7

J.(B,T) =1.28x10%(1+C,)S H?E

where the units of the variables which appear in the equation are cm™ for S,, cm for ¢,
and Gauss for H, and B. S, = d%/P, where d is the average dimension of the effective
boundary defects and [ their average spacing. B, is the average remanent magnetic flux
density. C, is an uncertainty factor, ranging from 1 to 8, depending on the structure of
the boundary, particularly on its smoothness and the thickness of its transition layer.
Since image force occurs near the boundary, it has to be balanced by the Lorentz
force resulting from the surface layer current near the boundary. However, because of
the demagnetization effect, the local field is usually very sensitive to fluctuations of
roughness of the boundary, and so is the surface layer current. An extremely thin
interface transition layer is also essential for strong boundary pinning, since it leads to
a very sharp reduction of the superconducting order parameter. Obviously, if the

introduced boundaries fail to meet these conditions with respect to smoothness and
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thickness, then the positive role of large-scale boundary defects on pinning can hardly be
observed. This might be the major reason why at the present time opinions on the

effectiveness of large-scale defect pinning in HTC superconductors are very conflicting.

Through our melt processing techniques, especially when high oxygen pressure is
used, second phase inclusions with high smoothness and sharp transition interface have
been produced. It has been observed that the amorphous layer between a Y,BaCuO;,
inclusion and the YBa,Cu,O, matrix may be as thin as Inm [66]. As an example, Fig.
8 shows both the measured value and predicted value, based on the equation given above
for J., of J, as a function of the applied field at 77 K for a YBCO sample produced
through pressurized melt growth processing. S, in this case was estimated to be about
350/cm on the basis of an SEM study. The fairly good agreement between the two
curves of J, suggests that in this case large-scale boundary defect pinning do play an
important role in the enhancement of J..

The enhancement of flux pinning through the introduction of other types of second
phase inclusions or precipitates has also been reported. Such second phases have included
as BaSnO, and BaTiO, in YBa,Cu;0, [67, 68] and Ca,CuO; and CaSrPbO; in Bi-Sr-Ca-
Cu-O systems [69, 70). Although the number of inclusions per unit volume can be
increased over a certain range, and so can S,, it is difficult to raise J; to a level of 108
Al/cm? by increasing S, alone. For example, to achieve J, = 5 X 10°at77Kand H =
1 tesla in YBa,Cu,O, through Y,BaCuOj inclusions, S, has to be as large as 2.4 X 10°

Jcm, even after setting C, in Eq. 5 equal to the maximum value of 8 for an optimized

28



W e

e oAb e

estimate. It means that even if the average dimension of the Y,BaCuOjs inclusions can
be controlled to be as small as 2.5 um, the total volume percentage of the Y,BaCuO;
phase still has to be as high as 60% for S, to reach 2.4 X 10° /cm. Such a large amount
of non-superconducting phase will certainly make the grain-texturing very difficult, even
without mentioning a serious decrease in the effective extent of the superconducting

region due to the presence of the large amount of Y,BaCuO; inclusions.

VI - FLUX CREEP IN MELT PROCESSED YBCO

Inside type 1I superconductors, supercurrent can exist because of flux pinning.
However, the flux lines may jump over pinning barriers due to thermal activation, which,

according to the flux creep model of Anderson [71], leads to a jump rate of »,

v = p,elon ©)

Here v, is a characteristic attempt frequency, and U, is the activation energy. U, at
low temperature (T ~ 10 K) has been estimated to be of the order of 1 ev for
conventional superconductors [72], but only about 0.01 - 0.03 ev for normally sintered
or single-crystal high-T, superconductors and high-T, films [72, 73, 74]. When the

temperature increases, the situation becomes worse, not just because of the increasing

~ thermal energy, but also because of the decreasing value of U, which leads to giant flux
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creep in HTSC at 77 K [73]. This caused at one time a serious concern about the
usefulness of HTSC materials [75]. Later researchers, however, found that in certain
types of "dirty" YBa,Cu,O, single crystals, U, at 77 K may be as high as 0.1 - 0.3 ev
[76], and in grain-textured Y-Ba-Cu-O materials U, may be as high as 0.7 ev [77]. In
the cases of the samples prepared through our pressurized-partial-melt processing
technique, U, values exceeding 1.0 ev have been obtained at 77 K.

U, is usually defined as the activation energy for flux creep which occurs at J =
J., namely when the vortex lattice is in the critical state. A fully critical state can easily
be achieved by charging the sample with a sufficiently high magnetic field, and then
completely withdrawing the applied field. The value of U, can then be obtained by
measuring the relaxation of the remanent magnetization, M,(t). In experiments carried
out in the authors’ laboratory, after cooling to 77 K, the sample was charged for 10
minutes with a field of 0.75 tesla in a direction either parallel or perpendicular to the c
axis. When the field was decreased to zero, the remanent magnetization in both cases
reached the saturation value. The magnetization was then measured every 8 seconds
using a vibrating sample magnetometer. About 100 - 200 s after the charging field was
decreased to zero, the relaxation rate became relatively stabilized, and then a logarithmic
decay of M, (t) was obtained in both cases, as shown in Figs. 9A and 9B. The

conventional flux creep relation [78,79] is given by

kT
u

off

M(t) =My [1-

t
ln—t—:;] (7)
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An effective activation energy U,y can be obtained from the slope of the curves of
M/M,, vs. In(t). Here t, is the vortex-hopping attempt time and M, is the initial
remanent magnetization. According to this equation, U in the case of pressurized-melt-
textured YBCO was found to have values of about 1.3 ev or 1.5 ev, corresponding to the
cases of the charging field being parallel to the c axis or perpendicular to the c axis,
respectively.

At the present time, the exact physical implications of U have not yet been
completely elucidated. It is widely believed that U scales with the pinning potential,
and any increase in pinning force will effectively increase Uy However, the real
situation is much more complicated. Although J. is undoubtedly proportional to the
pinning force, recent experiments on Y-Ba-Cu-O materials have shown that in single-
crystal materials J, or the pinning force can be increased by two orders of magnitude
through proton irradiation, while U, 4 increases by less than 25% [76]. In melt-textured
bulk samples, U, remains unchanged to within ~ 10% as J, or the pinning force
increases by a factor of 15 through neutron irradiation [62]. It is therefore clear that, at
least in high T, superconductors, U,; mainly depends on the structure of the pinning
barriers rather than on the total pinning force density. Strong irradiation can introduce
strong point pinning as well as strong line pinning, and consequently may raise J
dramatically. In melt-textured samples, there are many large boundary defects caused
by inclusions and isolated weak links, which are rarely seen in single-crystal samples.

The large increase in U, in the melt-textured samples implies that these large boundary
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defects are responsible for the high values of U

Although very high values of J, may be achieved by introducing defects using
various approaches such as irradiation, and, probably, chemical doping, it seems likely
that introduction of large amount of boundary defects is very important for obtaining a
high effective activation energy for flux creep. Therefore, these different approaches
should be combined, and incorporated in the design of methods intended to provide
improvement in both the value of the critical current density and its stability.

Flux jump is an extension of flux creep that normally occurs near critical levels
of current where the creep rate is enhanced and the superconductor is most susceptible
to thermal fluctuations. Flux jumps give rise to massive disturbances which can produce
enough heat to cause large sections of the device to become normal. Figure 10
represents a M-H curve at 4.5 K for a melt processed sample which is doped with excess
yttrium and platinum. The flux jumps can clearly be seen when the external field
produces supercurrents in the excess of 3 x 10° A/cm®. The interesting feature of this
material is that flux jumps are arrested relatively slowly after they are occurred, which
makes the system unstable.

For stability, the ratio of cooling to joule heating must be large enough so that the
superconductivity can be regained immediately after the jump. In conventional low
temperature superconductors, the flux jump process is avoided by embedding filaments
of superconductor in metal matrix for better heat conduction. However, HTC wires are
still far away from reaching their potentially high current densities (except bismuth wires

below 20 K), let alone multifilamentry forms. Therefore the flux jump problem has
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serious implications for these materials. Fortunately, for HTC materials the flux jump
field is one to two orders of magnitude larger than for conventional superconductors [80].
As a result, the requirement for the use of multifilamentry conductors is greatly relaxed,
and bulk materials become an attractive option for many applications such as strong

magnets.

vII - Z IE TP ESSED

In certain YBCO materials doped with various second phases, we have observed
a peak in irreversible magnetization preceded by a minimum after the first maximum in
the reversible region (see above). Such behavior has been also reported for single
crystals of YBCO [81, 82, 83]. This phenomenon has been attributed to the oxygen
defects. The general hypothesis is that the oxygen deficient regions have lower T, and
H,, values than the matrix. At low fields these regions are either proximity- or
Jospheson- coupled, but higher fields will drive them normal, and thus they become much
more effective pinning centers. At still higher fields the oxygen deficient regions can link
up and form intra-granular granularity which will render the system normal.

The anomalous behavior in doped-melt processed YBCO superconductors appears
to be similar to the corresponding phenomenon in single crystals. Such behavior has been

observed for a variety of dopants, including Pr, Bi, V, and In. Even though no firm
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consensus exists concerning the formation of these peaks in polycrystalline materials, the
best explanation at this time would be a similar argument to the one presented above for
single crystals. Here, instead of oxygen defects we would consider a region of weak
coupling effect between the dopant and the matrix, which is formed in the Pr-doped
samples described in the pinning section.

Unlike Pr-doped materials, we did not see any obvious anomalous phenomena in
the pure YBCO analogs which were produced under the same processing conditions.
Since both types of samples were well oxygenated, we concluded that the oxygen
deficient defects are not the major cause for the anomalous phenomena observed in the
case of the Prqg,Yo.09Ba,Cu;0, material, but that these phenomenon are related to the
doping with Pr’* ions. We believe that suppression of superconductivity in the coupling
regions around the Pr** ions at high fields is the major reason for this unusual behavior.
As was described above in the discussion of flux pinning, the pinning effect corresponds
to the fluctuation of superconductivity in the material. The smaller activity of the pinning
effect at lower fields, shown in Figure 6, suggests that at lower fields the local regions
around the widely distributed Pr’** ions are well coupled in superconductivity with the
matrix (see Figure 11a). In other words, superconductivity in and near these defect
regions may not seriously fluctuate because of the coupling effect. However,
superconductivity in these defect regions is still relatively weak compared with that in the
matrix (see Figure 11). Moreover, the superconducting coupling effect not only is
sensitive to the magnetic field, but it is also a function of temperature. ~ Consequently,

with the field increasing, the weak superconducting regions in the matrix become more
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weakly superconducting or even non-superconducting, and the weakly superconducting

or non-superconducting regions become larger. This is expected to make the defect
regions more effective in serving as pinning centers. This results in an increase in
hysteresis and in J, with increasing magnetic field as shown previously in Figures 5 and
6, respectively. The coupling effect shifts to higher fields when the temperature is
lowered, indicating the weak superconducting coupling regions become superconducting,
and larger fields are required to drive the material into the normal state, consistent with
the way in which weak link behavior varies with temperature. This effect is illustrated
in Figure 12 which shows the peak is progressively shifted to higher fields and disappears
completely at 10 K. Similar anomalous behavior has been observed with several other
dopants. The magnetization curves for the cases of doping with bismuth and with indium
are shown in Figures 13 and 14, respectively. It is worth noting that, when the
crystalline lattice matching of the dopant phase is not as good as in the case of Pr, which
is probably the case upon doping with Bi or In, a more diffuse coupling region is
expected to form. By increasing the amount of doping the coupling regions may grow
in volume until they become interconnected, resulting in the formation of weak links and
degradation of overall superconductivity. In addition, we have observed that the peaks
in magnetization obtained with different dopants are observed at different intensities of
applied field. We believe that the displacement of the peak position upon changing
dopants is due to the fact the each dopant may couple differently in the host
superconducting matrix. We are currently conducting systematic doping and oxygenation

studies on melt processed YBCO materials. By controlling the field dependence of the
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peak, we hope to be able to select materials that can operate at their maximum

magnetization at a given non-zero external applied magnetic field.

The authors are grateful to S. A. Olszowka for preparing the manuscript. This
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